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Wigner-function nonclassicality as indicator of quantum chaos
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We propose a Wigner-function-based parameter that can be used as an indicator of quantum chaos. This
parameter is defined as “entropy” from the time dependence of “nonclassicality” proposed by A. Kenfack and
K. Zyczkowski [J. Opt. B 6, 394 (2004)]. We perform our considerations for the system of damped nonlinear
(Kerr-like) oscillator excited by a series of ultrashort external pulses.
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I. INTRODUCTION

The systems demonstrating chaotic behavior in their dy-
namics are still the subject of much attention. Especially,
there has been a great deal of interest in exploring classical
dynamics of chaotic systems. For such systems certain meth-
ods allowing distinction between the regions of regular dy-
namics from those of chaotic one’s are well developed and
widely used. It is still of special importance to find the ad-
equate methods for analysis of the systems whose quantum
dynamics exhibit chaotic behavior. It is of interest not only
from the cognitive point of view, but also for the develop-
ment of quantum information theory methods. It is known
that chaotic behavior in the dynamics of a quantum system
should destroy the entanglement (which is the essential point
in the quantum computing) between the quantum states, but
surprisingly in some cases quantum chaos can even enhance
the stability of quantum computation [2].

Many attempts to address the problem of quantum chaos
have already been made. For example, it is known that there
is a correspondence between the statistics of eigenvalues and
eigenvectors of quantized classically chaotic systems and the
canonical ensembles of the random matrix theory [3-9]. The
distances between successive eigenvalues of a quantized cha-
otic system have the same probability distribution as the suc-
cessive distances between the eigenvalues of a random ma-
trix. There is also a method based on the fidelity decay,
indicating the existence of chaos in the dynamics of quantum
systems [10-12]. The time evolution of the fidelity between
the state evolving under the unitary mapping procedure and
the same initial state evolving under the same map but sub-
jected to some additional tiny perturbations, in the chaotic
region exhibits an exponential decay [12]. It means that there
is a significant difference between these two quantum states
and that the dynamics of the quantum system is sensitive to
the initial conditions. This sensitivity is a characteristic fea-
ture of the chaotic dynamics.

In the present paper we would like to apply the quantum
parameter based on the Wigner function (and connected to its
negative volume), introduced in [1] and referred to as the
“nonclassicality parameter,” to the problem of a quantum
counterpart of the classically chaotic system dynamics. We
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introduce an entropic measure based on this parameter and
show it to be sensitive to changes in the regions where the
classical counterpart of the system described is chaotic.
These changes indicate that the final state of the quantum
system in some regions is also very sensitive to the initial
condition variations and hence, very tiny perturbations of the
initial conditions lead to considerable changes in the final
quantum state. To investigate such phenomena we would ap-
ply the recurrence plots analysis. It will allow us to confirm
our statements about the chaotic behavior (in the classical
sense) of the strictly quantum parameter defined from the
Wigner function of the system described.

II. MODEL

We consider a system composed of an anharmonic oscil-
lator driven by a series of ultrashort external pulses. Various
aspects of such a system’s dynamics have been discussed in
many papers (for example, see [13-15], and the references
quoted therein). It is known that depending on the values of
the parameters used, the system can exhibit regular or cha-
otic dynamics [16]. The problem of the classical dynamics
and that of the quantum counterpart of this system is also
discussed in that paper.

The system is supposed to be initially in the vacuum state.
In the interaction picture, the time evolution of the system
under consideration is governed by the following Hamil-
tonian (we use units A=1):

[A{=I:INL+IA{K, (1)

where I:INL describes the evolution between subsequent

pulses and fIK describes the evolution initiated by an ul-
trashort pulse.

2 X apn2 A
Hy, = E(Cf)zaz, (2)
Hy= €@ +a)Y, 8t—kT). (3)
k=1

Operators d* and a are those of photon creation and annihi-
lation, respectively; y describes the nonlinearity of the oscil-
lator (for Kerr medium it is the third-order susceptibility) and
in further considerations it is set to 1; € is the strength of the
external pulse—nonlinear oscillator interaction, and 7 is the
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time between two subsequent pulses. Assuming that time T
exceeds significantly the duration of the single pulse, we can
model the series of these ultrashort pulses by a series of
Dirac delta functions.

In the present considerations we deal with the damping
case only. It seems to be a more realistic situation to let an
oscillator interact with the environment rather than simply
deal with a no-damping case. In real physical situations, the
influence of the environment (represented by the damping
process) may significantly change the system’s dynamics.
For the system considered the influence of the damping pro-
cess makes the system’s dynamics regular for a wider range
of external excitation strength than in the no-damping case.
As the system is damped in the chaotic region fewer states
are involved in the system’s dynamics, which significantly
simplifies numerical calculations. When we do not include
the damping process, in the chaotic region many more states
have to be considered and additionally, the chaotic behavior
in the quantum system considered is visible for longer times.
If we look closer at the numerical complexity of the problem
it becomes clear that for the cases without damping it would
be more suitable to analyze, for example, a fidelity decay as
a signature of chaotic dynamics in a quantum system rather
than to deal with a Wigner-function-based parameter. When
dealing with a Wigner-based parameter (which has to be cal-
culated and analyzed after each external kick) it would be
more desirable to work with a smaller basis and to have an
opportunity to observe chaotic behavior of the system in
shorter times as well.

For the system considered the density matrix approach is
necessary and we use the formalism proposed in [17] and
used, for example, in [16]. The time evolution of the density
matrix is governed by the following master equation:

dﬁ Xria222 4 Yinann A AN AAtA
—=-i[(@")%a"pl+ S (2apa* - a*ap - pa‘a), (4)
dt 2 2
which can be solved analytically (for example, see [17]) or
numerically. In fact, Eq. (4) describes the free evolution of
the damped system between two subsequent pulses. To in-
clude the interaction with the external field, one should apply
to the density matrix (after its free evolution during the time

T) the operator U x of the form

ij — e—ie(é*ﬂi). (5)
Consequently, the whole dynamics will be described succes-
sively by the evolution (during the time 7) according to the
master equation (4) and the “kicked” operator (5). The initial
state of the system considered is the ground state p(r=0)
=|0)(0].

It is known that the classical kicked Kerr oscillator, de-
pending on the values of the parameters used, can exhibit
regions with classically regular or chaotic behavior. Appro-
priate bifurcation diagrams of the mean classical energy as a
function of the external coupling parameter €, for weak and
strong damping cases, have been presented in [16]. The pro-
cedure used for obtaining such diagrams first requires the
explicit form of the equation of motion for the annihilation
operator for the time between the subsequent external pulses.
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FIG. 1. Bifurcation diagrams for y=0.1. The other parameters
are y=1, T=m.

The solution of this equation can be expressed in a simple
analytical form, because at first we neglect the damping pro-
cess, and consequently, the number of photons 7i=a*d is con-
served during the evolution. Then, we include the influence
of the external pulse (described by the action of the operator
(5), which in fact is a shift operator. The final point of the
procedure is to replace all the operators (d*,d) by the com-
plex numbers (a*, @) and the damping rate y can be intro-
duced at this point. Finally, the equation for « has the form

= () — ie)e—i(xlak - iflz—iy)T’ (6)

and the formula for the classical mean energy |a|* needed for
the construction of the bifurcation diagram can be obtained
easily. A classical state, which would be a classical counter-
part of the initial system state (the vacuum state) can be
simulated as in [17]. To introduce the initial condition we
have created an ensemble of classical trajectories whose
starting points had been randomly chosen from a circle of
radius 0.5 and centered at a=0 and after that the average
trajectory has been treated as a classical counterpart of a
quantum one.

In the present paper we shall concentrate on the case
when the damping constant y=0.1. The bifurcation diagram
for a classical mean energy (Fig. 1) shows that for a wide
range of the external kicks strength e< ~0.9, one can ob-
serve the regular dynamics of the classical oscillator. The
chaotic behavior appears when € exceeds the value of ~0.9.
Additionally, the bifurcation (starting from e~ 0.7) appears
in the diagram. This situation corresponds to that discussed
in [16]. Moreover, one should remember that the regular and
chaotic behavior visible in the bifurcation diagram concerns
the classical dynamics of the anharmonic oscillator.

In the present paper we will try to answer the question
about the regularity or chaosity in the dynamics of the quan-
tum system whose classical counterpart behaves regularly or
chaotically. In other words we will try to make use of a
quantum parameter (characterizing the quantum system) to
identify the regions of regular quantum dynamics and those
of a quantum chaotic nature. We have chosen a quantum
parameter (referred to as “nonclassicality”) based on the
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negativity of the Wigner function [1] for the analysis of
quantum dynamics of the kicked nonlinear oscillator. As
claimed in [1], this parameter is connected to the quantum
character of the states analyzed and consequently, we shall
check its usefulness as an indicator of quantum chaotic
behavior.

III. EVOLUTION OF THE NONCLASSICALITY
INDICATOR

This paper is devoted to the applicability of the nonclas-
sicality parameter as an indicator of quantum chaos. This
parameter has been introduced in [1] and is related to the
negative volume of the Wigner function. It is known that the
coherent states minimize the uncertainty principle and in this
sense they are considered as classical states. When we talk
about the nonclassicality of the states we understand this
nonclassicality as the deviation from the coherent states. It is
known that the Wigner function is a quasiprobability func-
tion that represents a quantum state in the coherent state
basis. The Wigner function is joined with the symmetrically
ordered bosonic operators. For a state described by the den-
sity matrix, p is defined as [18]

W(a) =2 Ti[D™(a)pD(a) P], (7)

where é(a)zexp[ad*—a*d] is the displacement operator

and P=exp[ima*d] is the parity operator. The Wigner func-
tion can take both positive and negative values. The nonclas-
sicality indicator proposed and discussed in [1] is defined as
follows:

5(p)=f[|W(a)|—W(a)]da- (8)

The value of § depends on the volume of the negative part of
the Wigner function and is equal to zero for the coherent and
squeezed vacuum states for which the Wigner function is
non-negative [19]. In this sense, the &(p) parameter describes
how much the quantum state considered differs from the co-
herent one and in consequence, from the “classical” state. It
was shown by the authors of the &(p) definition, that the
value of this parameter for the Fock states |n) grows mono-
tonically with n and consequently, the higher the value of n
the greater the deviation of the state |n) from the coherent
state. Moreover, the value of 8(p) does not depend on the
degree of squeezing.

We have analyzed the time evolution of the parameter
&(p) defined as in Eq. (8), concentrating on the parameters
describing our system (7', x, ), used for analysis of the bi-
furcation diagram. From the whole range of external field—
nonlinear system coupling strengths € we have chosen the
values corresponding to the classically regular and chaotic
regions.

Moreover, in this paper we use 8,(p)=38(p)/n instead of
&(p), which means that the nonclassicality is divided by the
mean number of photons after each external kick—so we use
the parameter, which can be more convenient in further con-
siderations when the number of photons grows considerably
(regions of chaos). In the regions of regular dynamics it
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causes no significant changes in the values of &(p). Figures 2
and 3 present the time evolution of §,(p) for the excitation
strengths corresponding to the classically regular €=0.2, 0.3,
0.4—Fig. 2(a) and chaotic e=1.24—Fig. 2(b) dynamics.
Thus, we have found that whenever the classical system ex-
hibits regular dynamics, the changes in §,(p) are regular, and
depending on the 7y value they may be slower or faster
damped. The character of time evolution does not change
with an increasing value of e. The regular damped oscilla-
tions (whose frequency depends on the value of €) occur—
this behavior can be seen in Fig. 2(a), where we have plotted
S(p) versus time for various values of external kick strength
€. One should keep in mind that for such values of € the
classical counterpart of our quantum system behaves regu-
larly. We have plotted the time dependence of the mean en-
ergy of the classical system in that regular region—Fig. 3(a)
[for recollection—an average of randomly chosen 10, in our
case, trajectories starting from a circle of radius 0.5 centered
at Re(a)=Im(a)=0]. We can see that indeed, the mean en-
ergy of the system (found for a sufficiently long period of
time) does not vary significantly with changes in the external
pulses strength. For comparison, when we plot the mean
number of photons of the quantum system—Fig. 3(b) (which
would be a kind of analog of the mean energy of the classical
system) we can observe a similar behavior of this quantity.
Small changes in the kicking strength cause the same small
changes in the final mean number of photons (/i) in the sys-
tem. For the case of strong external pulses (e>0.9—chaotic
region) the situation changes considerably. The changes in
the values of the system’s final energy are more sensitive to
the changes in the external pumping strength. While for the
case of weak excitations a change in € of =0.1 causes a
change in the mean number of photons of =0.09 for €
>0.9 the same changes in the pump strength cause a 10X
larger increase in the mean number of photons generated in
the process. Moreover, the energy of the quantum system
initially increases rapidly (as in its classical counterpart) for
the values of € corresponding to the “deep chaos” case in the
classical system. We can clearly see the similarities of the
essential features of the two quantities discussed here (mean
energy and mean number of photons). The values of the en-
ergy for the classical and quantum system’s are not exactly
the same but the character of their changes is similar in both
(classical and quantum) models.

More interesting is the situation when the pulses are suf-
ficiently strong to lead to chaotic behavior in the classical
counterpart of the system described. We have chosen the
kick strength e=1.24. It is seen from the bifurcation diagram
that this value is high enough to put the classical system into
a region of deep chaos. For comparison, we can analyze the
behavior of the quantum counterpart of the kicked oscillator
for the same values of the other parameters as in the previ-
ously discussed case. Figure 2(b) presents the evolution of
8,(p) characterizing the quantum system for the parameters,
which caused the classical counterpart of the system ana-
lyzed to behave chaotically. It is seen that there are no regu-
lar oscillations anymore. Irregularities apparent in the time
evolution of §,(p) indicate that the final state of the quantum
system considered cannot be well defined and changes sig-
nificantly from one external pulse to another. Many states
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with various photon numbers are involved in the process and
none of them are dominant. We can see that the parameter
8,(p) indicates almost instantaneous irregular changes. The
range of values reached by J,(p) indicates that the Wigner
functions have noticeable negative parts (which is a measure
of the quantumness of the state). The negative fractions of W
also change from one pulse to another.

IV. RECURRENCE PLOTS ANALYSIS

We have identified irregular changes in the quantum pa-
rameter J,(p) for the cases corresponding to the situation
when the classical counterpart of the system exhibits chaotic
behavior. We suppose that these irregularities are connected
with the fact that the quantum system dynamics is also cha-
otic. To confirm our supposition we will analyze the time
dependence of the nonclassicality parameter via the recur-
rence plots (RP) method, which can be easily applied for a
short time series.

The idea of recurrence plots comes from [20] and was
developed and widely used in nonlinear data analysis. This

L
350 400

method can be used to solve problems related to medicine
(see, for example, [21,22]), economy [23,24], geophysics
[25,26], astronomy [27,28], and many other fields, whenever
there is a need to analyze a time varying signal coming from
a nonlinear system. The basic idea of RP is to graphically
present the times at which the system analyzed recurs, or
more precisely, the times at which the system’s trajectory
presented in an appropriate phase space returns (with some
approximation) to the same area. RP allows analysis of non-
linear signals from the systems whose trajectories generally
exist in a many-dimensional phase space via a two-
dimensional plot.

To construct RP we need to determine the binary matrix
R. Its elements are defined as [20]

R;;=0(ey, — X - x;

), i,j=1,...,N, x;eR, (9)

where O is the Heaviside function, €, is the threshold pa-
rameter, and || || denotes the norm. This norm allows determi-
nation of the distance between two points. The trajectory of
the system [obtained as the time series of some system’s
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parameter—for the case discussed here it is §,(p)] is first of
all reconstructed in an appropriate phase space (whose di-
mension is determined before) at time ¢. Consequently, x;
—)?j measures the distance between the points of the so re-
constructed trajectory. If two points fall inside the same re-
gion (sphere) according to €,, we would label them by 1,
otherwise they are labeled as 0. In consequence, one obtains
a square matrix with zeros and ones, or graphically with
black and white points.

The matrix can be analyzed using the recurrence quanti-
fication analysis (RQA) introduced by Zbilut and Webber, Jr.
[29,30], based on examination of diagonal structures of RP.
This method has been extended by Marwan [31], who has
proposed new measures of complexity based on vertical
structures in RP. In general, long diagonal lines in RP are
characteristic for periodical orbits, whereas homogeneously
distributed black points indicate white noise. On the other
hand, the system exhibiting chaotic dynamics will produce
shorter diagonal structures in RP and isolated black points
among them. Moreover, the vertical structures suggest the
existence of laminar states (states which do not change or
change very slowly with time [31]).

In this paper we have applied the RQA method for ana-
lyzing the time varying nonclassicality parameter &,(p). We
have concentrated on the regions where the classical coun-

terpart of the system analyzed behaves chaotically and we
suppose that the quantum system exhibits chaotic dynamics
as well. For the damping constant y=0.1 we have obtained
irregular changes in 8,(p) [see Fig. 2(b)]. RP would help us
determine whether the system characterized by the time
varying parameter 8,(p) exhibits chaotic dynamics or not. To
generate the RPs we have used a CRP toolbox by Marwan
[32].

The first task is to reconstruct the phase space trajectory
of the system using a time series of a measured quantity (in
our case the nonclassicality of the system). It can be done
using a time-delay method, which involves the use of the
appropriately chosen minimal sufficient dimension for recon-
structing the original system’s trajectory. At first, we have
estimated the optimal time delay 7 (using a mutual informa-
tion function) as 7=1. It has to be chosen in such a way that
the linear dependencies between two subsequent vectors in a
reconstructed phase space are reduced. It can be realized by
finding the minimum of the mutual information function,
which describes the joint probability of finding the time se-
ries value at the ith interval and after a time 7 in the jth
interval [33].

Moreover, we have found the embedding dimension as
d=10. We have used for this purpose the false nearest-
neighbors function that counts the number of points in the
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nearest neighborhood of a specified point. A point marked as
a neighbor of another one in a lower dimension may not
belong to the neigborhood of this point in a higher dimension
phase space—such a point is called a false neighbor and the
false nearest-neighbors function allows choosing such a
phase-space dimension at which the number of false neigh-
bors vanishes.

For these parameters we have generated the RP presented
in Fig. 4(a). We can see a pattern that is characteristic of
chaotic dynamics—some diagonal lines are visible. Their
length distribution is plotted in Fig. 4(b). The maximum

25

length of the diagonal line is 26 points. Although the lines of
shorter lengths are dominant, there is a significant amount of
lines with lengths larger than 2 points. Formation of diagonal
lines is characteristic for chaotic dynamics of the parameter
analyzed and their lengths are related to the value of the
largest Lyapunov exponent of a chaotic system [20,34]. From
RQA we have obtained the average diagonal line length of 4
points. It is worth stressing that most of the points that are
present in the RP form diagonal structures—the percentage
of these points is =92%. Therefore, we can say that the
process of nonclassical states generation initiated by external
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pulses [appearing as an increase in J,(p)] during the time of
the evolution, for the excitations sufficiently strong to cause
chaos in the classical counterpart of the system considered, is
rather of deterministic nature. Stochastic processes are char-
acterized by isolated points or very short lines (mainly com-
posed of 2 points) and a low value of DET—contrary to the
case discussed here. Therefore, we can conclude that the pa-
rameter &,(p) can be treated as an indicator of chaos gener-
ated in quantum systems.

V. ENTROPIC MEASURE OF CHANGES IN THE
NONCLASSICALITY PARAMETER

As we are interested in a strictly quantum parameter that
would allow us to determine whether the system is in the
regular or chaotic region of its dynamics, we would use the
definition of the nonclassicality parameter &8,(p) and propose
a quantity (having the physical sense of entropy) that mea-
sures the changes in &,(p). We can define this entropy in a
few steps:

(1) We define the Fourier transform of the 8,(p) as

Tmax

Flw) =2 §,(ne". (10)

1

min

(2) Then we calculate a “power spectrum” P=|F(w)|> and
normalize P to get Py(w).

(3) Finally, we define the entropic measure of changes in
the nonclassicality indicator through the power spectrum as

E=- 2 Py(0)In(Py(w)). (11)

In consequence, we obtain one value of entropy for the
specific coupling strength €. The entropy value equal to zero
would indicate that the nonclassicality parameter §,(p) does
not change in the whole range of time considered. The in-
crease in the value of E and its irregular changes for various
values of coupling strength would indicate significant
changes in the time dependence of the §,(p) parameter. From
the calculations of the above defined entropy, we have found
that for the regions of regular system dynamics the changes
in the value of the entropy with € are smooth in character
(Fig. 5) indicating regular oscillations of &,(p). Changes in
the value of entropy arise from the fact that the frequency of
6,(p) oscillations change with € and for higher values of €
more oscillations of &,(p) would appear prior to their van-
ishing [see Fig. 2(a)]. Additionally, with higher values of €
more states are involved in the process. But as long as the
changes in E are smooth, the system’s dynamics is regular.
When the system is in the deep chaotic region we see sig-
nificant and irregular changes in the value of entropy. These
irregularities (appearing for excitation strengths correspond-
ing to the classical deep chaos) are visible in Fig. 5 (from
€=~1). Therefore, we can see that the entropy E (that is a
strictly quantum parameter) can indicate irregular changes in
the dynamics of the quantum system described. These irregu-
larities appear for the values of € leading to the chaotic be-
havior of the classical counterpart of the quantum system
described. We have already analyzed these regions via the
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FIG. 5. Entropy of changes for &,(p) versus excitation strength
€. We assume T=m and y=0.1.

recurrence plots of the time varying &,(p) parameter, and we
have identified the regions corresponding to the classical
deep chaos as being chaotic also for the quantum system.
Therefore, we can conclude that the regions of irregular
changes in the entropic parameter proposed are those of cha-
otic nature, indicating the presence of quantum chaos
phenomena.

VI. CONCLUSIONS

The quantum systems, whose classical counterparts ex-
hibit the chaotic behavior are still widely explored. Their
analysis is expected to answer the question of whether the
chaotic dynamics of a classical system would persist in the
dynamics of its quantum counterpart. It is known that for the
classical systems there are well-known methods allowing
distinction between the regular and chaotic regions, whereas
for the quantum models such methods are still being devel-
oped. Some of them have been already proposed and dis-
cussed, and we have mentioned them in the Introduction of
this paper.

In this paper we have proposed an entropic parameter E
(of strictly quantum nature) based on the nonclassicality pro-
posed in [1], connected with the Wigner function. We have
shown that this parameter used for the analysis of the quan-
tum system, which in the classical limit can exhibit chaotic
dynamics, undergoes rapid and significant changes with cou-
pling strength €, in the regions corresponding to classical
chaos. As an example we have analyzed a quantum Kerr-like
oscillator externally kicked by the ultrashort pulses. It is well
known that nonlinear quantum systems can be used as the
components of systems exhibiting quantum entanglement
and as such can be considered as a tool in quantum informat-
ics. It is therefore of special interest to explore simple meth-
ods allowing the identification of the regular or chaotic re-
gions in dynamics of such nonlinear quantum systems. The
behavior of the entropic measure E for such a system indi-
cates that the final state of the quantum system in the regions
corresponding to the deep classical chaos cannot be well es-
tablished and changes irregularly from one pulse to another.
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The entropic parameter, apart from the sensitivity to tiny
perturbations, reveals irregular dynamics even for short
times. We have analyzed this short-time dependence of the
nonclassicality parameter (which is the basis of the entropic
measure) using the RP method—a tool used in time-series
analysis. We have concluded that the dynamics of changes in

PHYSICAL REVIEW E 78, 066219 (2008)

the nonclassicality of the state generated in the process dis-
cussed for the regions corresponding to classical chaos can
be treated as being chaotic as well. Therefore, we believe
that the parameter E proposed in this paper could be a useful
tool for investigation of systems exhibiting quantum chaotic
phenomena.
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